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Flexible nfa window management over
interval-based event pattern matching

WEILIANG TA0*°, WENHAI L1?, YAN Liu*

Abstract. In this research, we provide a formalization framework to integrate the streaming
window into the NFA-based event pattern matching system. We identify all the events with their
duration interval and provide the related strategy to assure their partial order. This feature both
offers the systematic support under the complex sub-query application and guarantee the scalability
for the distributed real-time environment. By providing the event insert operations, the window
management can flexibly settle the two sliding constricts in all four semantic context circumstances.
The window confines each output of the low-level event to a certain range, and hence provide the
high-level pattern with both temporal range and event counting semantics. Experimental results on
various window parameters demonstrated effectiveness of the proposed window sliding semantics
and the efficiency of the optimized management techniques.
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1. Introduction

Due to the tremendous potentiality applied to business intelligence on workflows,
supply chain management for RFID, large-scale attack monitoring and financial
analysis, continuous pattern matching over durative atomic events along with their
high-level composite processing has aroused considerable attention in both academic
and industrial worlds. Pattern matching process over the event streaming, especially
in the interval semantic environment, has increasingly received concerns in several
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pivotal yet controversial aspects such as temporal semantics definition, event strategy
selection, consumption mode construction, accomplished method foundation. Upon
that, some framework prototypes accompanied by a fair amount of implemental and
optimization innovations emerged in the correlative application area.

Different from the data stream management system (DSMS), event pattern match-
ing system focuses more on the expressivity, effectivity, flexibility and scalability.
For depicting the real application scenario, the queries in event pattern must pos-
sess abundant flow semantics, particularly the business expression in the sequence
scenes. Furthermore, faced by the massive real-time data stream, the event pattern
matching pays close attention to the resource utilization and the processing efficiency
for providing both high throughput and low latency. At the same time, implemental
strategy must have the flexible and scalable ability for the increasingly emerging
requirement. We notice here that, as one of the most prominent characteristics of
the complex event pattern, the temporal restriction and event feedback settlement
is critical for either event composite or embedded sub-query circumstance. For ex-
ample, in continuous (most recently arisen) three days, pick the stock that starts
at a volume larger than 1000, and then has been increasing monotonically in price
for at least 30 minutes and does not end off its initial value in each remaining day.
These two involved semantic contexts need both embedded pattern definition and
count/ temporal sliding window supports, and cannot be properly handled with the
existing event processing systems.

In this paper, for flexibly providing semantic context scalability, we provide a for-
malization framework to integrate the streaming window into the NFA-based event
pattern matching system. We are not presenting a complete system implementa-
tion in this paper due to the matching optimization challenges, but the proposed
formalization framework can exhibit several contributions including;:

1. Pure interval semantic support. Different from the detection-based prim-
itive event expression, we identify all the events with their duration interval
and provide the related strategy to assure their partial order. This feature
both offers the systematic support under the complex sub-query application
and guarantee the scalability for the distributed real-time environment.

2. Partial semantic context. Instead of the instance selection and consump-
tion mode employed in the existing propositions, the semantic context in this
paper exhibits a series of interval oriented context definition with the partial
relationship. Towards the two basic operators: sequence and Kleene closure,
the compact context compresses the initiator by abandoning the existing initial
events. There against, the extended context rejects the newcomer matching
the initiator’s pattern, while the complete and traceable contexts output the
complex events by recording all the arisen initiators. Similar with the initia-
tor, the detector is also handled differently in the four semantic contexts, and
the corresponding outputs respectively hold a successively temporal inclusion
relation within the sliding window backgrounds.

3. Flexible window management. For the event pattern matching, one of
the two sliding windows can be founded on the instances lists to resolve the
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temporal and event counting constricts respectively. By providing the event
insert operations, the window management can flexibly settle the two sliding
constricts in all four semantic context circumstances. Fundamentally, the win-
dow confines each output of the low-level event to a certain range, and hence
provide the high-level pattern with both temporal range and event counting
semantics.

The remainder of the paper is organized as follows. Experimental part gives the
formalization framework with its basic definitions, presents the state window man-
agement along with its semantic context related maintenance algorithms. Results
and Discussion part details the relative experimental analysis comparison followed
by the related background work. Finally, Conclusions part states conclusions and
our future work.

2. Experimental Formalization Framework

In the event pattern matching systems, an event was originally defined as an
instantaneous occurrence and the last event’s occurrence time was used as the time
of the entire event expression. The early event specification languages, especially in
the active DBMSs, employ this detection semantic for compositing the instantaneous
events.

Without differentiating between the event occurrence and the event detection,
detection semantic cannot post its output to the event stream, and then cannot use
the composite events in the embedded patterns. More importantly, the practical
atomic events generally take on a durative manner, and the interval based pattern
matching can make the operators easier to handle the orders of the overlap events
than the detection based one. For the sake of simplification, in this section we will
propose the four interval semantic contexts along with their partial properties.

(1) Expression on interval

Each event instance eg‘ 1 < j < oo matching an event pattern F;|1 < i < oo with

its duration time [t,(e!), t.(e!)] can be a primitive event or a composite event, and
the whole event information is denoted by (eZ) Without loss of generality, we give
a temporal space T composed of the infinitely nonnegative timestamps, and assume
the time interval I(e) = [ts(e), te(e)] of any event instance e takes the timestamps
ts(e), te(e) as its start and end. The fundamental relationships are expressed with
a series of definitions as follows.

Definition 1 (Partial order). A temporal partial order < on T satisfies the

conditions:
1. If tg, t1, to €T and ty < t1, t1 < 1o, then tg < ts.
2. For any t € T, tt.

The partial order on timestamps is the basis of the other interval operators.
Among all the thirteen temporal relationships, during/contains and after/before are
the most used binary relationships in the interval event matching circumstances.
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Definition 2 (During/contains). A during relationship DUR and its counter-
part contains CT'N between two intervals I! and I? can be defined as DUR(I', I?) :
t2 <t <tl <2 and CTN(I, 1?): t! <2 <2 < t! separately.

The during/contains relationships as well as the other eleven ones constitute
Allen’s interval algebra, which is one of the best established formalisms for temporal
reasoning. Omitting the related reasoning properties, we use these two relationships
here for demonstrating the temporal relationships among the four proposed semantic
contexts. Somewhat differently, the before/after in Allen’s algebra are utilized to
extract a successor operator in the event pattern context.

Definition 3 (Successor). An instance ¢/ matching pattern F is the successor
of another event ¢* if and only if the former’s duration time I7 starts after the
latter’s end and no extra instance of E after e* ends before e/, i.e.

For a given suffix pattern, this definition can dynamically extract the unique
successor instance of a prefix even if the two rival suffixes end at the same time.
Fig.1 gives a sample of the successor determination among four overlap events.
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Fig. 1. Intervals of four overlap events

(2) Semantic context definition

Conventionally, event, pattern matching system can be regarded as a combination
of data streams and complex event processing systems. Nevertheless, the pattern
matching could hardly be processed efficiently in a real-time stream manner.

Many researches omit this feature''?, while others compromise between the ef-
ficiency and the accuracy by tailoring the complete history semantic. It is worth
noticed that selection strategy and consumption context are two of the most repre-
sentative propositions. However, the former is essentially an alternative definition of
sequence and Kleene closure founded on event filter, while the former can be seen as
a variation of both tuple and temporal sliding window semantics in CQL3. Flexible
window integration along with its sliding strategy is critical for the practicability
of the pattern matching systems. Here we formally give the four interval based se-
mantic contexts for sake of completeness, and will propose the related state window
management strategies in the next chapter.

In terms of both the scope of output and the space utilization, we are dedicated
to constructing a context hierarchy mainly target on the scalability of the most
expensive operators, i.e. sequence and Kleene closure. In the sequel, the pattern of
the initiator, detector and terminator is orderly denoted with F;, F; and E;. More
concretely, due to the uniqueness of the terminator in Kleene closure, the above
two operators can be both regarded as a binary operator BOP with just two input
streams. Briefly, we take the initiator and detector as the two restrictive patterns
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on the two inputs respectively. We also propose the context definitions focused on
the initiators followed with their restrictive demonstrations for the detectors of both
sequence and Kleene closure.

Definition 4 (Compact). For a BOP(E;, E4) on two inputs P, S, each output
(el, €)[os, o] must satisfy

Where ez € [[ef lp denotes the event e{ derived from stream P can match pattern
E;, and (e{ , €f)[os, 0] takes ef as the composite initiator. This definition picks the
instance ef of initial pattern E; as the start of the output, if and only if ef has the
latest end time among the contiguous instances of F; with no instances of F; occurs
between these contiguous initial instances. As shown in Fig.2, b* is the successor
of both a® and a* for pattern operator BOP(A, B), but only a* is selected as the
start due its later end time relative to a?.
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Fig. 2. Arrival instances of three primitive patterns

Definition 5 (Expended). For a BOP(E;, E;) on two inputs P, S, each output
(el, €)os, 0] must satisfy:
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In contradiction to compact context, expended context chooses the first one of
the contiguous initiators as the start of the output. For the same example above,
expended context select a® instead of a®.

It is obvious that the above two definitions share a same exclusive semantic, i.e.
each detected event belongs to at most one output and is abandoned or consumed
afterwards.

Definition 6 (Complete). For a BOP(FE;, E;) on two inputs P, S, each

detector e§ starts an output for any of its initiators e! € [[eg]]P supposing es =

SUC(e!, Eg) held.

Complete context relaxes the above two with the non-abandon semantic, i.e. the
later arrival initiator does not overwrite the existing initiator. The explicit semantic
can be seen in Fig.2. When b2 arrives, it only takes a? as the initiator for BOP(A, B)
even though a' has been selected as the initiator of b'. Similarly, ¢! wholly takes

b, b2, b® and b* as its initiators for BOP(B, C), but compact context select b* as
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the only initiator.

Definition 7 (Traceable). For a BOP(E;, E;) on two inputs P, S, any de-
tector ef starts an output for each of its initiators e] € [e/]p along with their
intermediations

el et]] 5, s, = 17 e € Lello) (el = SUCe], )
A (eh = SUC(,, Ey))
A (te(el) < telel))}

Traceable context implies that any of the contiguous initiators with no detector
followed can generate an output, and the intermediate initiators between the start
initiator and the detector are treated as part of the output. As shown in Fig.2,
considering the query “the series of B between A and C”, all four outputs shown
in row 4 and column 1 of Table 1 are generated in the traceable context. Slightly
different from the omitting implications adopt by complete context, traceable records
all the intermediate detectors for the one-to-one correspondence of the output in
complete context.

Table 1. Output of the four contexts

[]l []l7
Compact [[eg 1% [[eg]]é
[]Tp [e]1p
[!1p [e]1p
Expended [[e{ 1% [[eg]]{:.
[]Tp [e]Tp
[]]p [e]1p
Complete [[ez]]é [[eg]]{D
/] /]
(/1 [e21;
[e]]p [e/]p
Traceable [[e{]]{) [[eg]]{)
[e}]p [e]]p
2T [e]Te
[!]p [e]1p

(3) Partial properties and event operators

Definitions 4-7 demonstrate the semantic construction of our research, and mainly
express the determination of the initiators of a given pattern. This section will
elaborate the relative partial properties and the two event operators processing in
the above four contexts.

As mentioned above, among the contiguous initiators, the temporally rightmost
and leftmost one is respectively selected as the pattern initiator in compact and ex-
pended contexts. Nevertheless, complete and traceable contexts generate an output
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for each of the contiguous initiators. As for the detectors, when considering the
sequence operator, all the four semantic contexts select the “first” successor for the
contiguous initiators, i.e. the initiators [e] ]}é, and the detector ¥ must satisfy:

Veli € [[e{]]{D 6’3 = SUC(eé, E,)

Similarly, the Kleene closure operator in the above four contexts select the whole
series of the detectors until the terminator e}'| Vel € [[e’j]]g‘ SUC(elf, Ey) = e}

happens, i.e.

Vel € [ellp, e € [eblig| (e = SUC(e!, Ea))
V(e = SUC*(el, [ek]s, Ea))

Where SUC* is the transitive closure of the relationship SUC for depicting the
transitively successive relationship among el 65 and e}, and it can be expressed as
follows.

em = SUC* (€, [[eg]]g, Ey) < Jel, €3, ..., efl € [[e’;]]SD}
(e} = SUC(el, Ey)) A (e2 = SUC(el, Ey))......
A (el = SUC(e) ", Eg)) A(elp = SUC(), Ea))

Obviously, under the four contexts, outputs of Fig.2 generated by the pattern
sequence SQ(A, B) and Kleene closure KC(A, B, C') can be listed as follows.

Among the semantic contexts, compact and expended have the same quantity
of outputs. The leftmost and the rightmost selection can both, however, result the
temporal inclusion relationship between the corresponding outputs from the two
contexts.

Property 8. Supposing for an operator BOP(E;, E;) on any two inputs P and

S, any detector ¥ € [e%]q can generate an output OScpo(el, ekl el € [el]p in com-

pact context or OSpxp(el, k)| el € [el]p in expended context, and DUR(OScpc)
exists.

Two points must be noticed here. Firstly, as we mainly consider the selection
strategy of the continuous initial intervals, the circumstance when DUR(e?, el) is
assumed not happen in the input P. More precisely, DU R(ef , €l) can result in a
contrary temporal inclusion. Secondly, the relationship shown in property 8 is rather
a “finished by” relationship between OScpc(el, ek) and OSgxp(el, k) due to the
same detector and terminator of both contexts.

Similarly, as shown in definitions 4-7 and property 8, we give the following two
properties in terms of the quantity inclusions without any demonstration.

Property 9. For any given event operator and input streams, the outputs
from both compact and expended contexts are subsets of the output from complete
context.

Property 10. For any given event operator and input streams, the outputs from
complete and traceable context are the same except that the event set generated from
the former is one-by-one the subset of the one from the later.
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3. Window Management

In general, the development of the previous window semantics of the event pro-
cessing is oriented towards the continuous query language, and thus can be divided
into three abstract levels in terms of the granularity of the aggregate information ex-
tracted from the temporal raw tuples. Firstly, the statistical stream window extracts
the aggregations over a sliding time period especially for several flat event operators?.
Secondly, requiring the event detection as an antecedent condition, the point event
window usually provides a temporal range for restricting the event matching with
the given patterns. Finally, eminently different from the above two methods by
merely providing the semantic framework of the event processing, the formalization
window language proposes the definition construction of event pattern confined to
both the interval and tuple along with their related sliding strategies®.

(1) State-based window Semantic

To express the composite event semantic with intervals sliding, just as the ex-
ample illustrated in the introduction, we integrate the sliding window strategy into
the NFA state evaluating. We give the window semantic based on the NFA states
and their corresponding instances, and later proposes the related evaluation issues
especially for two sliding window strategies.

Similar with Cayuga, our language framework realizes the mapping of the event
operators into a SQL-like syntax, which expresses the sliding window queries over
event streams. The grammar is constituted as follows.

CONTEXT {CPCEXPICPL[TCL}
SELECT <Attributasat] [, Attributa A5 Alias]>
FROM [WINDOW {TEMPORALICOUNT <Range, Slide=}]
[RESTRICT {Pradicts [AND|OR Pradicts]}]
<Streamln]>
SEQUENCE [WINDOW {TEMPORAL JCOUNT <Range, Slida=}]
[REESTRICT {Pradicts} [AMDOR Pradicts]}]
<Streamn =
EIMNCLOSE [WIMNDOW {TEMPORALICOUNT <Range, Slida=}]
{[RESTRICT {Pradicts [AMDOR Pradicts]}],
[RESTRICT {Pradicts [ANDIOR Pradicts]}],
[RESTRICT {Pradicts [AND)OR Pradicts]}]}

This framework is mainly composed of three categories of element, i.e. Clauses,
Operators and Restrictions. The clauses SELECT, FROM and PUBLISH can be well
understood as its literal meaning similarly with Cayuga, while the clause CONTEXT
designates the semantic type of the entire query among one of the above four context
definitions. Restrictions by the parameters, appearing as either temporal windows
or predict combinations, can act on a single stream or the stream compositions
connected by Operators SEQUENCE and KLNCLOSE. Under this framework, the
illustrative Stock example can be given as:
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CONTEXT CPC
SELECT =MName, Prica, Volumne=
FROM WINDOW {COUNT 3, TEMPORAL 6hrs}
==Stock>
ELNCLOSE WINDOW {TEMPORAL 3(0min, COUNT 1}
{RESTEICT {Spr=. Volumsa = 1000},
RESTRICT { Szuf Marne =Scur Mama},

RESTRICT {%suf Price < $ourPrica} }

<Btodk=>
ELNCLOSE WINDOW {TEMPORAL 8hrs—End{Spr=). endiofhrs,
COUNT 1}

{RESTRICT {Stast(Sps=) Prica < Ssuf Prics},

RESTRICT {Start(Spre) Nams = $suf Mama},
RESTRICT {Start(Sprs) Prica = Ssuf Prica}}
=Stock>
PUBLISH <StraamiChat

As shown in the previous framework, KLNCLOSE has three components: initia-
tor, detector, teminator. It also worth noting that the WINDOW restriciton acting
on each output is composed of both range and sliding components complying with
either temporal and count semantics.

(2) NFA State window evaluation

In the above SQL-like query for the example, Stock is sequentially cited as the
inputs of the two KLNCLOSE operators along with their predict restrictions. By
picking the following events of the initiator, the first KLNCLOSE operator keeps the
states along with their instances until any terminator arises, and then provides these
instantial events to the second one as long as the duration of its output satisfies the
range requisition of the given window. The second KLNCLOSE, subsequently, takes
the first’s output as its prefix input and detects the price of the remaining events
compared with their prefix. After these, the top WINDOW outputs all the event
series satisfying the declarative continuous three days requirement, and shifts a time
intveral of size 6 hours over its input stream.

As for the difference of the window restriction from the predictions, Fig.3 gives
an abstract NFA structure along with its two restricting evaluation. For simplicity,
in Fig.3A, the initiator and detector conditions of the both KLNCLOSE are denoted
by the directed edges annotated with initiated and detected respectively, and the two
types of restrictions guiding B and C are labeled at State 3 and Output. Further-
more, in both B and C, the events filtered by the initiator, detector and terminator
are accordingly stated as a;, b; and ¢y, and each completely arrowed path from State
1 to Output gives one output under the both restrictions. It must be noticed that,
in Fig.3C, each suffix event can change the state of the instance generated by the ini-
tiator of the first CLNCLOSE, and the window locating in the Forward edge of each
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Fig. 3. The NFA window evaluation

prefixal operator controls the state transformation the suffixal operator. Moreover,
this non-overlaped illustration can also handle the interval based primitive series by
the initiator selected with one of the above four contexts.

(3) Sliding window management

The former sections demonstrate the window structure of the operator compared
with the predict restrictions. Each path is composed of the qualified events linked by
the coded edges, and the window restriction acting on the corresponding end state
of each operator implements the transformation by inserting a new edge from the
current event to its suffix event. Nevertheless, as the difference between State 3 and
Output in Fig.3C, the COUNT and TEMPORAL restrictions trigger the transfor-
mation by the quantified count of the event iterations and the satisfied duration of
the involved events respectively.
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One import point of the above labeled edge evaluation is the coded strategy,
which is closely related to the context semantic. Due to space limitation, we only
give the coding procedure for the above illustration, and the four context semantics
can be coded by directly adding edge into either the start or the intermediate state.
Firstly, a linkage among the consequent start event, i.e. every event that begins
a new instance, is constructed and each edge between every two of them is labeled
with “0”. Then, an increasingly labeled edge generates as long as each transformation
arises from State 1. While in the composite event, each sequent isomorphic event
generates an edge with increasing label for any transformation. As can be seen in
Sate 5 of instances from aq, event bg and by generate the transformations to Output
and mark their edge with different labels. Finally, the last temporary output can be
organized with the temporally successive primitive events for aggregation. The result
of Fig.3C is thus generated as {a1, b1, b2, as, bs, bs, b5, bg}, or more thoroughly
{{a1, b1, by, ag, b3, bs}, {az, bs, by, as, bs, be}}.

Besides the restricting requirement, WINDOW also involves the sliding process-
ing management attaching importance to either the space efficiency or the statistical
function. By default, WINDOW adopts a null-reference sliding strategy. On the one
hand, the frontend events are pushed out from the cache as long as the temporal
sliding is explicitly declared or the count sliding can wipe out all the citations of
these events. On the other hand, especially in the count sliding circumstance, the
cache must keep all the consecutive events of the referencing start event even though.
As shown in Fig.4, these sliding procedures can be demonstrated by a slight modi-
fication on the state structure of Fig.3.

Omitted Omitted

Input Output
O Forward o Initiated >& Forvard - TForgard >X Forvard
0 2

TEMPORAL Zutn RANGE: COUNT 1
LIDE: COUNT 1

Detected Detected
A. Wipe—out sliding for COUNT
Omitted Omitted

Qutput

Input Q
O Forward Ol Initiated 3 Forward

TEMPORAL Zmin
Detected Detected
B. Referencing keep for COUNT

Omitted Omitted

Input Output
Forward ) Initiated ) Forward ) Forward 0 Forward
O D & O

Detected Detected
C. Rigid sliding for TEMPORAL

Fig. 4. Three sliding semantics in the context of window management

1. Wipe-out sliding for COUNT

The last WINDOW is abandoned so that both the range and the slide COUNT
are marked as “1”. Hence, the path 1-1-1-1 is treated as the final output, and
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thereupon events {ai, b1, b2, ag, b3} is wiped out due to null-reference after output.
Notice that, after this wiping, all the following processing will sharply differ from
that of Fig.3C.

1. Referencing keep for COUNT

Similarly with Wipe-out sliding, as shown in Fig.4B, the third WINDOW is
abandoned but the range COUNT is set by “2” and slide with “1”. When 1-1-1-1 and
1-1-1-2 arises, these two series are simultaneously generated. Only the edge labeled
with “1” from b3 of State 5 to Output is deleted due to the referencing of the path
1-1-1-2.

1. Rigid sliding for TEMPORAL

Different from COUNT, the TEMPORAL sliding must erases the event from the
cache and maintains the related linkages. As illustrated in Fig.4C, suppose the time
window between event a; and b3 is less than one unit time as given in Fig.4C, the
path 1-1-1-2 will not be generated after we get the output 1-1-1-1; otherwise, we
generate the path 1-1-1-2 and slide the window to abandon the event within the
latest temporal unit window.

As shown in above, the window and sliding strategies are orthogonally divided
in terms of both the count and temporal semantics. NFA maintains the instances of
each state and generate the output once new instance is appended onto the cache. In
the temporal sliding context, these instances are periodically deleted from the cache
if their timestamps are more than a given temporal range old. In contrast, in the
count-based sliding, the deletion will be triggered once each new instance is inserted.
It’s widely accepted that the time complexity of the NFA matching can be simplified
to O(n) to run a DFA-compiled regular expression against an n-length input series.
Nevertheless, as the KNCLOSURE given in Section State-based window Semantic,
the worst complexity would be O(nm), where m is the number of edges of the NFA.
After applying the window strategy, we can confine this computation within each
window and abandon the out of date events by conducting the two proposed sliding
strategies, which results in the time and space complexity of O(wm)|w < n.

4. Results and Discussion

We gave an open-sourcing implementation ICMDS by integrating the above or-
thogonal strategies into the Cayuga® to evaluate the output cardinalities and re-
sources against different window settings. To verify the availability of the proposed
window strategies, we conducted the experiments on the yahoo financial dataset to
evaluate the efficiency of the proposed window management strategies. In our exper-
iments, two sets of queries with different complexities were employed to validate the
processing efficiency in terms of processing cost and memory usage. In detail, our
experiments were divided into four categories, where the CPU and memory usages
were plotted at the scale of input cardinalities. To further measure the effective-
ness, the output cardinalities and processing time were taken as two dimensions to
highlight the availability of the prosed window strategies.
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(1) Comparisons simple event operator

The simple event operator took the real-time price of 20 stocks from yahoo as
the test set. We feed ICDMS with the stock price, as the schema of <StockID,
Price, Time>. The query is used to the denoted StockID that has an increasing
price within a fix number of query window.

To measure the prosed window-based strategies in comparison with the tradi-
tional select-based methods, we confined the window size with COUNT 50. Since
the traditional select-based cannot guarantee this statistical window, the framework
needs to maintain all the historical dataset and enforce a self-join over a set of price
series. We noted the join-involved atomic events as their OUTPUT and compared
them with the cache size of the proposed framework. As shown in Fig.5, the pro-
posed window-based strategy outperformed its competitor in all the four indexes
since the substantial pruning power of the rolling window. Observe that the cache
size can be linearly measured by the memory usage at the different input scales.
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Fig. 5. Resource usage and efficiency comparison of the window-based framework
against processing without window

We note here that the window range 50 denoted each stock were configured with
window to accommodate the latest fifty atomic events. To this end, the initial CPU
usage has slight difference in the first stage before the input cardinality was below
three thousands events. Afterwards, the window-based strategy provided 20% CPU
saving on average. Since this window is extremely small, our proposed strategy
required only one tenth of memory of the non-window method, which results in the
output of the window operator generate less than 10% of the non-window framework.
In this regard, its process time showed a linear decrease to the later, exhibiting
12%720% of the non-window framework. In this simple query pattern, the NFA
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inference has the linear complexity to the atomic events, which exhibited the linear
corresponding relationships between the process time and the input cardinality.

(2) Comparisons with various window ranges

In this experiment, we conducted different window ranges to evaluate the effi-
ciency and effectiveness of the proposed methods. The dataset is the same as given
in section Comparisons simple event operator, where the various window ranges were
given because of different time sensitive. In addition, we further introduced a select
condition on the price to extract the stock that has the sharp changes. As compared
to Fig.5, this results in at most 80% decreases of the memory usage when the event
was extremely large (after the input is beyond 80K). Correspondingly, the output
cardinalities in all four windows decreased linearly.

.
| —o— windowS0men
|| T winddow 1 Olman B
19K - —— windowZ00men feaaaaaaaod e

& - O windhow150mam
o = v
& g
-
g £
: 00 O TS = S
g (1] S [E— . windowi00cpu | 4
i —8— waindowl50cpu | !
LRl B s sty e wpnciogonems A Ko e o e e e n
ol ; ; . ; oy - - : ;
1k 10K 30K SOk ]’ 110K 1K 10K 30k S0K B0k 110K
ewnt number EvETt nUmber
}%?E""" """" m------- fm= - mmmmm- e qmmmmmmmemms BaMlp---p------- - B A
| [—e— wincows0ma | o N | [—a— wirowS0mo:

161k f window100od == -mm s fmm e | 7hi |- (PSP A T g
e [ T window 1500 | | B window 150
| o window200md L | wirdow200mee

QUTpUL ( ITSENGE Mumber )
o
ko
i
i
procesEtimEMIlisasond me)
S

1K 10k 30K S0k 20K 110K 0. M1K 10K 20K SOk kK 110K
et rumber Engnt number

Fig. 6. Comparison towards complex queries with various window ranges

In Fig.6A, when we increasing the window range, the CPU usage increased less
than 10% in the window 200 than that of window 50. Since our NFA computation
is based on path coding as given in section NFA State window evaluation, the larger
output as given in Fig.6C will not introduce significant increase of memory usage.
As given in Fig.6B, the memory differences of all the settings are negligible even
their window ranges linearly increase. While regarding the process time, the larger
window range resulted in larger matching cardinality, and hence exhausted linear
increase of computational time. As shown in Fig. 6C and 6D, the caching paths and
process time in the window range 200 were almost 4 times of the window 50.

We note here that, as compared to the following results in different sliding set-
tings, this experiment used the same sliding range as the window range. It means
that, as given in the Wipe-out sliding strategy, the composite events that referenc-
ing the outdated atomic events will never generate the output when the temporal
range between the outdated event and the oldest caching event are beyond a win-
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dows range. As analyzed in the following sections, although the different sliding
ranges will produce different composite events, the different sliding strategies will
not significantly influence on the resources usages since the path coding as well as
the incremental NFA matching techniques.

(3) Efficiency with various sliding ranges

To measure the cardinalities of composite events and resource usage in different
window parameters, we use the same query condition as given in section Compar-
isons with various window ranges and vary the window sliding parameters in this
experiment. The Wipe-out, Referencing keep and Rigid sliding strategies were mea-
sured as compared to the traditional rolling window. In addition, we also plotted
the resources usage of the Referencing keep strategy similar to section Comparisons
with various window ranges.
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Fig. 7. Comparison towards complex queries with various window ranges and
sliding parameters

As shown in section Sliding window management, the Reference keep strategy
will abandon the atomic events of which the timestamp is outdated. It means that
the event cache will keep a fix volume once the window range is given, regardless
the sliding range. To this end, the NFA matching input will be constant for a given
window size. Compare Fig.7 with Fig.6, there is slight difference in all the four
indexes. With less than 2% jitter in CPU and process time, Fig.7 exhibited almost
the same resource usage as shown in Fig.6. Recall that in each window range, Fig.6
from section Comparisons with various window ranges uses the same sliding size as
the window range, while the sliding range of Fig.7 was proportional to the window
range.

Table 2.Cardinality of composite events over 110K input with different sliding and window
parameters



612

WEILIANG TAO, WENHAI LI, YAN LIU

Ranges Rolling Wipe-out Referencing Rigid slid-
keep ing

5010 39943 52342 61223 47823

10020 62232 105231 119823 89012

15030 92374 148724 167801 12999

20040 128714 189910 220005 16711

We further compared the different output cardinalities by varying the sliding
strategies. Here, the traditional rolling strategy was enforced by fixing the sliding
range as zero, which means that the composite event will never be produced once
its oldest atomic event is outdated. With the atomic input cardinality 110K, the
output cardinalities of all the four strategies are listed in Table 2.

It is clear that the rolling window omits the composite events across the window
boundaries which results in the smallest output as compared to the three proposed
sliding strategies. As for the later, the Referencing keep strategy maintained the
atomic events among the cache regardless whether those atomic events have been
used by the other generated events. In this regard, it generated 21% output more
than the Wipe-out strategy. While in the Rigid sliding strategy, the outdated atomic
event constricted by the sliding range will never been reused once the first composite
event has been generated. As shown in Table 2, it reduced 23.1% output cardinality
as compared to the Wipe-out strategy.

(4) Efficiency with couple window settings

Our last experiment employed an event sliding window couple with a predict-
based sliding window to produce the composite events, where the stock price was
relatively changing in a periodic time window. In general, this form of query has the
smaller NFA matching input because of the selective filtering condition. However, as
compared to the single sliding window, the higher matching complexity increases the
running time in the sample input cardinality. We conducted the rolling strategy in
the predict-based window while combining the temporal Wipe-out sliding strategy
with the periodic window. In practice, we can configure this rolling predict window in
the environment where an iterative sub-event is required. The path coding method
given in section Sliding window management provide us an efficient way to share
the prefix atomic events especially in the complex pattern matching environments.
Similar to the above experiments, the input cardinalities are varying from 1K to
110K, we plotted the computational and memory resource in Fig.8, where the legends
gave the form of temporal windows and the predict window parameters.

As compare the Fig.6A and 7A, the CPU usage of Fig.8A linearly decreases after
the input reaching 10K. As demonstrated in Fig.3C, the predict events (b1, bs) and
(b3, bs) are confined by the predict window, where the unsatisfied prefix paths will be
removed by the predict filters. Meanwhile, once the predict windows are outdated,
their succeed paths will be correspondingly deleted from the cache. It is highly
desired that, the caching sub-events filtered by the predict condition should decrease
after the cached event number reaching some peek value. As given in Fig.8A, the
coupled sliding windows consumed the maximal CPU percentage at the scale of 10K.
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Fig. 8. Comparison towards complex queries with a couple of sliding window with
various window and sliding ranges

Afterwards, the continuous deletion of the predict events will decrease at most 25% of
the CPU usage. We also note here that, as compared the single sliding window given
in section Efficiency with various sliding ranges, this coupled windows-based query is
much more selective and its matching complexity is significantly larger. In contrast
to Fig.7C, the composite events cardinalities of Fig.8C exhibited a similar relative
changes yet decreased 12%~68% in each sliding window configure. In addition, this
higher matching complexity over a smaller matching cardinality made the process
time insensitive to the window ranges. As shown in Fig.8D, the different window
ranges only produced less than 12% differences process time. In comparison, Fig.7D
in much more sensitive to the window ranges, where the window 20040 run 180%
process time of window 50010.

In conclusion, the flexible sliding window and predict window gave us a two-level
filtering method to extract the composite events towards the continuous atomic
events, where the matching complexity increases in corresponding to the configured
windows. Meanwhile, the memory usage is quite stable due to the path coding
strategy regardless the caching composited events.

(5) Related works

We are witnessing a proliferation of business intelligence on workflows, supply
chain management with RFID, large-scale attack monitoring and financial analy-
sis. Due to the tremendous potentiality applied to these emerging fields, continuous
pattern matching over the durative streaming events has aroused considerable at-
tention in both academic and industrial worlds”. Pattern matching process over
the event series, especially in the interval semantic environment, has increasingly
received concerns in several pivotal yet controversial aspects such as temporal se-
mantics definition, event strategy selection, consumption mod-e construction and
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accomplished method foundation. Hence, some framework prototypes accompanied
by a fair amount of implemental and optimized innovations emerged in the correla-
tive application area.

Different from the data stream management system (DSMS), event pattern match-
ing system as well as its regular expression methodology focus more on the expressiv-
ity, effectivity, flexibility and scalability. Furthermore, faced by the massive real-time
data stream, the event pattern matching pays close attention to the resource uti-
lization and the processing efficiency for providing both high throughput and low
latency. Meanwhile, with the ever-expending fields of the complex event process-
ing (CEP), the implemental strategy exhibits more flexible and scalable ability for
the increasingly emerging requirement®. It should be noticed that, as one of the
most prominent characteristics of the complex event pattern matching, the tempo-
ral restriction! and event feedback settlement is critical for either event composite
or embedded sub-query circumstance.

In the event pattern matching systems, an event was originally defined as an
instantaneous occurrence, and the last event’s occurrence time was used as the time
of the entire event expression®. The early event specification languages, especially
in the active DBMSs, employ this detection semantic for compositing the instanta-
neous events®. In general, the development of the previous window semantics of the
event processing is oriented towards the continuous query language, and thus can
be divided into several abstract levels in terms of the granularity of the aggregate
information extracted from the temporal raw tuples. The statistical stream window
extracts the aggregations over a sliding time period especially for several at event
operators?. By taking the event detection as an antecedent condition, the point
event window usually provides a temporal range for restricting the event matching
with the given patterns. Eminently different from the above two methods, by merely
providing the semantic framework of the event processing, the formalization window
language proposes the definition construction of event pattern confined to both the
interval and tuple along with their related sliding strategies?.

Apart from the constraint CEP, many researchers compromise between the effi-
ciency and the accuracy by tailoring the complete history semantic!?. It is worth
noting that selection strategy and consumption context are two of the most represen-
tative propositions'!. However, the former is essentially an alternative definition of
Sequence-and-Kleene closure'? founded on event filter, while the latter can be seen
as a variation of both the tuple and temporal sliding window semantics in CQL?.
As shown in 2, flexible window integration along with its sliding strategy is critical
for the practicability of the pattern matching systems.

5. Conclusions

In this research, we provide a formalization framework to integrate the streaming
window into the NFA-based event pattern matching system. In order to demon-
strate the related properties, Cayuga is picked out from the existing mainstream
prototypes due to its interval primitive event definition and its impressive sub-query
support. We identify all the events with their duration interval and provide the
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related strategy to assure their partial order. This feature both offers the systematic
support under the complex sub-query application and guarantee the scalability for
the distributed real-time environment. By providing the event insert operations, the
window management can flexibly settle the two sliding constricts in all four seman-
tic context circumstances. Fundamentally, the window confines each output of the
low-level event to a certain range, and hence provide the high-level pattern with
both temporal range and event counting semantics.

We identify the interval event duration and provide the related strategy to assure
the temporal partial order. Instead of the instance selection and consumption mode
employed in the existing propositions, the proposed semantic contexts exhibit a
series of interval oriented event composition rules within the restricts of the partial
relationship. The disorder and distributed streaming processing can be taken as our
future directions.
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